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ABSTRACT: Excess fluoride ion (F) in drinking water causes harmful effects such as
dental and skeletal fluorosis. Hence, its concentration in drinking water must not
exceed a certain range. This study investigated the removal of F from aqueous
solutions with CuO nanoparticles using a range of experimental approaches,
including pH, adsorbent dose, contact times, and initial F concentration. The
equilibrium adsorption data were analyzed using the Langmuir and Freundlich
adsorption models. The maximum uptake value of F was 3152 mg/g at pH 5 during 40
min with 0.005 g/L nanoparticles of CuO and an initial F concentration of 5 mg/L. The
fluoride adsorption equilibrium over the adsorbent was well described by the
Freundlich model. The findings of this study showed that CuO nanoparticles are
quite effective for F removal from aqueous environments. Thermodynamic analyses
showed that the adsorption of F onto CuO nanoparticles was endothermic and
spontaneous.
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INTRODUCTION
The fluoride ion (F) is classified as one of the contaminants of water for human

consumption by the World Health Organization (WHO) and excessive ingestion
can result in adverse health effects including dental and skeletal fluorosis.1
Consequently, its concentration in drinking water must not exceed a certain range.
According to the WHO standards, the permissible limit of F ions in drinking water
is between 0.5 and 1.5 mg/L.2 Groundwater is a major source of human intake of
F. Besides the natural geological sources for F enrichment in groundwater, several
industries are also contributing to F pollution to a great extent.3 

Some industries which discharge wastewater containing high F concentrations
include glass and ceramic production, electroplating, coal fired power stations,
semiconductor manufacturing, brick and iron works, beryllium extraction plants,
and aluminium smelters.4 The discharges of these industries have higher F
concentrations than natural waters, ranging from 10 to more than 1000 mg/L.5
Furthermore, F is present in numerous environments such as groundwater,6,7

bottled water,8,9 and drinking water.10

Several processes are available at present for F removal both in the field and the
lab, such as membrane filtration,11 ion-exchange,12 electrocoagulation,13 and
electrodialysis.14 These methods, though being modernized, are still boring and
time-consuming.15 In contrast, the adsorption process, because of its simplicity,
accessibility, convenience, cost effectiveness, and the availability of an extensive
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range of adsorbents, is still one of the most extensively used processes. Many
adsorbents, both natural and synthetic, have been successfully used for F removal
including agricultural wastes,16 carbon based materials,17 activated alumina,18

calcite,19 granular ferric hydroxide,20 and fly ash.21 In the present work, CuO
nanoparticles were utilized as nano adsorbents for the removal of F from aqueous
solutions.

MATERIALS AND METHODS
CuO nanoparticles (<100 nm) were purchased from Sigma-Aldrich (St. Louis,

MO). The other chemicals used were analytical reagents (AR) grade. The standard
stock F solution (1000 mg/L) used in this study was prepared by dissolving 0.221
g NaF into 1000 mL water. The stock solution was further diluted in order to
prepare working solutions of the required concentration. 

The adsorption experiments were carried out as batch tests in 250 mL flasks with
magnetic stirring. Each test consisted of preparing a 100 mL of F solution with a
desired initial concentration (5–100 mg/L) by diluting the stock F solution with
distilled water, and transferring it into the beaker on the magnetic stirrer. The pH
of the solution (3–13) was adjusted using 0.1N HCl or NaOH solutions. A known
mass of CuO nanoparticles (0.003–0.1 g/L) was then added to the solution, and the
obtained suspension was immediately stirred for a predefined time (5–120 min).
After the desired contact time, the samples were withdrawn from the mixture by
using a micropipette, the suspensions were centrifuged for 5 min at 6,000 rpm to
remove the adsorbent, and the F concentration and the pH of the supernatant were
analyzed. The concentration of the F remaining was measured using by the
SPADNS method with a DR 5000 spectrophotometer (HACH Company, USA).

Adsorption kinetics were described by the pseudo first- and pseudo second-order
models. In addition, equilibrium data were analysed by the Freundlich and
Langmuir equilibrium isotherm models. In addition, thermodynamic parameters
such as standard Gibbs free energy (∆G0), standard enthalpy (∆H0), and standard
entropy (∆S0) were evaluated.

RESULTS AND DISCUSSION
Effect of initial pH on F adsorption: The pH of the solution is an important

factor controlling the surface charge of the adsorbent and the degree of ionization
of the materials in the aqueous solution and is related to the pHpzc (the pH point of
zero charge) of the adsorbents. To determine the optimum pH for the maximum
removal of F, the equilibrium sorption of F (with an initial F concentration of 20
mg/L) was investigated over the pH range of 3–13. As presented in Figure 1, it is
obvious that the pH of the solution played a significant role on the adsorption of F
onto the CuO nanoparticles. The adsorption amount of F on the CuO nanoparticles
decreased with increasing initial pH, from 3144 and 3152 mg/g (at pH 3 and 5,
respectively) to 2048 mg/g (at pH 13). In addition, the maximum removal
efficiency of F was found to be 78.8% at pH 5. 

At pH values lower than the pHpzc of CuO nanoparticles (pHpzc 8.6), there is a
high degree of attraction between positively charged CuO nanoparticles and
negatively charged F, which can favor the adsorption of F onto CuO nanoparticles.
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In contrast, at pH values higher than the pHpzc of CuO nanoparticles, the
adsorption of F onto CuO nanoparticles was restricted by the electrostatic
repulsion between negatively charged CuO nanoparticles and negatively charged
F, resulting in a low level of adsorption.22 Similar findings have been reported by
other researchers.23-25

Effect of CuO nanoparticles dose on F adsorption: The adsorbent dosage is an
important parameter because it determines the capacity of the adsorbent (CuO
nanoparticles) for a given initial F concentration. Therefore, to evaluate the effect
of adsorbent dose on the adsorption of F, 0.003–0.1 g/L CuO nanoparticles were
used for adsorption experiments for 40 min at a fixed initial pH (pH 5), initial F
concentration (20 mg/L), and temperature (22±1ºC).

As presented in Figure 2, the adsorption capacity decreased from 4630 to 173
mg/g, while the removal percentage increased from 69 to 86.5%, when the CuO
nanoparticles dosage increased from 0.003 to 0.1 g/L. The lower adsorption
capacity of F at a greater dose of adsorbent is probably due to the decrease of the
surface area of the adsorbent by the over lapping or aggregation during the
sorption.26 Nevertheless, the higher dose of the CuO nanoparticles in the solution
and the greater the availability of active sites for F led to a higher removal of F.
The maximum removal efficiency of F was observed with an adsorbent dose of
0.05 g/L. More F removal was not detected with a higher dosage of adsorbent and
the removal continued approximately constant. Similarly, Bazrafshan et al. studied
the effect of adsorbent dose (activated carbon obtained from cumin herb wastes)
on the removal of Reactive Red-120 from aqueous solution.27 Their findings
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Figure 1. Effect of initial pH on F adsorption onto CuO nanoparticles (initial F concentration =
20 mg/L, adsorbent dosage = 5 mg/L, time = 40 min).



Research report
Fluoride 49(3 Pt 1):233-244
July-September 2016

Fluoride removal from aqueous solutions by cupricoxide nanoparticles
Bazrafshan, Balarak, Panahi, Kamani, Mahvi

236236
showed that the removal efficiency increased from 64 to 97%, while the qe
decreased from about 320 to 40 mg/g with an increase in the adsorbent dose from
0.1 to 1.4 g/L. Similar results have been reported by other researchers. 28-31

Effect of contact time and initial F concentration: The contact time between the
pollutant and the adsorbent is one of the most important design parameters that
affect the performance of adsorption processes.32 The effect of contact time on the
F adsorption by the CuO nanoparticles was investigated for 120 min at different
initial F concentrations. As shown in the Figures 3 and 4, the amount of adsorbed
F and the removal efficiency increased with prolonging the contact time and
reached equilibrium at about 80 min for different initial concentrations. This
indicates that the equilibrium time is independent of the initial fluoride
concentration. Therefore, 80 min was selected as the optimum contact time for
other experiments.

In fact, as shown in Figure 3 the removal of F increased with the increase in
contact time at all initial F concentrations. For the first 60 min the adsorption
uptake was rapid (~ 42–70%). It then proceeds at a slower adsorption rate and
finally attains equilibrium at 80 min. Actually, a large number of vacant surface
sites are available for adsorption during the initial stage, and, after a lapse of time,
the remaining vacant surface sites are difficult to be occupied due to repulsive
forces between the solute molecules on the solid and in the bulk phases.33 Similar
findings were reported by Cengizand and Cavas34 and also by Gulnaz et al.35
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Figure 2. Effect of adsorbent dose on F adsorption onto CuO nanoparticles (initial F
concentration = 20 mg/L, initial pH = 5, time = 40 min).
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Figure 4. Effect of contact time for the adsorption of F onto CuO nanoparticles (trend of
adsorbed F).
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The effect of the initial concentration of F on the extent of adsorption by the
CuO nanoparticles was studied and the relevant data are given in Figure 3. As can
be seen, when the initial F concentration is increased, the percent of F removal
decreased. In contrast, when the initial F concentration is increased, the amounts
of adsorbed F also increase (Figure 4), so the removal of F depends on the
concentration of the F in the solution. For example, when the initial concentration
of F increases from 5 to 100 mg/L (at contact time 60 min), the equilibrium
sorption capacities of CuO nanoparticles increase from 74.2 to 1056.2 mg/g. This
increase in the proportion of removed F may be probably due to an equilibrium
shift during the sorption process. In fact, the initial concentration of F provides an
important driving force to overcome the mass transfer resistance of the F between
the aqueous phases and the solid phases, so increasing the initial F concentrations
would enhance the adsorption capacity of the CuO nanoparticles for F. In similar
work, Mohammad et al. studied the effect of the initial F concentration on the
adsorption of F by groundnut shell.36 They observed that the F removal efficiency
decreased from 93 to 82% with an increase in the initial F concentration from 5 to
30 mg/L.

   Effect of temperature on F adsorption and thermodynamic studies: The effect
of temperature on F adsorption was investigated at 293–313K. As it can be seen
from Figure 5, the removal efficiency of F for all initial concentrations was
increased, when the temperature was increased from 293 to 313K. 
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Figure 5. Effect of temperature on adsorption of F onto CuO nanoparticles (initial pH= 5,
adsorbent dosage = 0.05 g/L, contact time= 80 min).
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Increasing the temperature is known to increase the rate of diffusion of the
adsorbate molecules across the external boundary layer and in the internal pores of
the adsorbent particle, owing to the decrease in the viscosity of the solution.37

Similar results have been reported by other researchers.25,38-40

In addition, to determine the thermodynamic parameters, experiments on F
adsorption were carried out at different temperatures in the range 293–313K
(kelvin). The free energy change (∆G0) of the sorption reaction is given as:

where R is the universal gas constant (8.314 J/mol/K) and T is the absolute
temperature in K. The thermodynamic parameter, Gibb’s free energy change, ∆G0,
is calculated using Ka obtained from Freundlich and is shown in Table 3. The
values of enthalpy (∆H0) and entropy change (∆S0) can be obtained from the slope
of the plot of ∆G0 versus T. A plot of Gibb’s free energy change, ∆G0, against
temperature, T, was found to be linear (Figure 6). 

The enthalpy change, ∆H0, and the entropy change, ∆S0, for the adsorption
process were obtained from the intercept and slope of the above equation and
found to be 3.22 kJ/mol and 0.05 kJ/mol/K, respectively. Also, the negative values
of ∆G0 confirm the feasibility of the process and the spontaneous nature of
adsorption with a high preference of F by CuO nanoparticles. Additionally, the
decrease in the negative value of ∆G0 with an increase in temperature indicates

                                                                ∆G0 = – RT ln Ka

                                                                ∆G0 =  ∆H0 – T∆S0 
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Figure 6. Plot of Gibbs free energy change, ∆G0, versus temperature, T.
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that the adsorption process of F on CuO nanoparticles becomes more favorable at
higher temperatures.

The adsorption process can be categorized as physisorption and chemisorption
by the magnitude of the enthalpy change. It is accepted that if extent of enthalpy
change is less 84 kJ/mol, adsorption is physical. Nonetheless, chemisorption takes
place in a range from 84 to 420 kJ/mol.41 From these results (Table 1) it is clear
that physisorption is much more favorable for F adsorption. Furthermore, the
positive value of ∆H0 indicates that the adsorption reaction is endothermic.
Entropy has been defined as the degree of chaos of a system. Also, the positive
values of entropy (∆S0) show the increased randomness of the solid-solution
interface during the sorption of F on the CuO nanoparticles. These positive values
of entropy may be due to some structural changes in the adsorbent during the
adsorption process.

Kinetics of the adsorption process: As illustrated in Figure 7, the removal rate of
F by CuO nanoparticles was fast during the initial stages of the adsorption
processes, especially for the initial F concentrations of 50 and 100 mg/L.
However, the adsorption equilibrium was reached at 80 min for all the seven
concentrations tested. The kinetic data in Figure 7 were treated with a pseudo-
second-order rate equation. The second-order kinetic model is expressed as:

where k2 is the pseudo-second-order rate constant (g/mg/min); qe the quantity of
F adsorbed at equilibrium (mg/g); qt the quantity of F adsorbed at time t (mg/g)
and t is the time (min).

As it can be seen from Figure 7 the data fitted well with the second order kinetics
model (R2>0.99). Also, the calculated qe values agree very well with the
experimental data (Table 2). Similar kinetic results have been reported in the
adsorption of Reactive black 5 by multi-walled carbon nanotubes.25

Table 1. Thermodynamic parameters for F adsorption on CuO nanopart ic les 

Tem perature (K) ∆G0 (kJ/mol) ∆H0 (kJ/mol) ∆S0 (kJ /mol K) 

293 –11.57344705 

298 –11.79905228 

303 –12.11046296 

308 –12.35530245 

313 –12.55796355 

 

 

3.22 

 

 

 

0.05 

 

                                                                t                 1                  t
                                                                          =                +
                                                               qt             K2qe

2              qe



Research report
Fluoride 49(3 Pt 1):233-244
July-September 2016

Fluoride removal from aqueous solutions by cupricoxide nanoparticles
Bazrafshan, Balarak, Panahi, Kamani, Mahvi

241241
   Adsorption isotherms: The interaction between the CuO nanoparticles as the
adsorbent and F is clarified by the adsorption isotherm models. In the present
study, two isotherms, namely the Langmuir and Freundlich isotherm models, were
investigated. In fact, the isotherm provides a relationship between the
concentration of the pollutant in solution and the amount of pollutant adsorbed on
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Figure 7. Pseudo-second-order kinetic plots for F adsorption on CuO nanoparticles at different
initial concentrations of F (adsorbent dose = 0.05 g/L, pH 5, time = 5–120 min, and initial F
concentration = 5–100 mg/L).

Table 2. Pseudo-second-order adsorpt ion rate constants  and qe values   
for different initial F concentrat ions  at  pH 5 

 

Initial F concentrat ions (mg/L) K2 qe (mg/g) R2 

5 0.1175 0.0116 0.9976 

10 0.0646 0.0057 0.9937 

20 0.0127 0.0026 0.9982 

30 0.0219 0.0017 0.9895 

40 0.0228 0.0012 0.9752 

50 0.015 0.0014 0.9878 

100 0.0085 0.0008 0.9908 
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the solid phase when both phases are in equilibrium.42 According to the results of
this study, the correlation coefficient of the Freundlich model, at 303–313K, was
higher than that of the Langmuir model, indicating that the Freundlich model is
suitable for describing the adsorption equilibrium of F onto CuO nanoparticles
(Table 3). A similar result was reported by Bazrafshan et al. on methylene blue
removal from aqueous solutions by low-cost ZnCl2-treated Pistachio-nut shell
ash.43

CONCLUSION
In the present study, the adsorption of F onto CuO nanoparticles was

investigated. Batch adsorption tests demonstrated that the adsorption is affected
by various conditions such as initial pH, adsorbent dosage, contact time, and initial
F concentration. The findings show that CuO nanoparticles are an effective
adsorbent for the removal of F from aqueous solutions. The equilibrium time was
observed to be 80 min. A solution containing 20 mg F/L was treated at an
efficiency of >89% where the removal capacity was 357 mg F/g CuO
nanoparticles. The adsorption kinetics can be successfully fitted to the pseudo-
second-order kinetic model. The equilibrium data for the adsorption of F on CuO
nanoparticles were best represented by the Freundlich isotherm. The
thermodynamic analyses showed that the adsorption of F onto CuO nanoparticles
was endothermic and spontaneous. Furthermore, the adsorption of F onto CuO
nanoparticles was via a physisorption process.

Table 3. Isotherm parameters for adsorpt ion of F onto CuO nanopart ic les at various temperatures 

   
                                                      Langmuir isotherm  

  Parameters                                                     Temperature (kelvin)                              

 293 K 298 K 303 K 308 K 313 K 

qm (mg/g) 20124.91 0.8927.69 6573.86 5858.18 5387.98 

k L (L/mg) 0.004 0.009 0.014 0.016 0.017 

R2 0.8539 0.8692 0.8307 0.8206 0.8156 

                        Freundlich isotherm 

  Parameters                                                    Temperature (kelvin)                              

 293 K 298 K 303 K 308 K 313 K 

k F 115.7 117.02 122.41 124.58 124.68 

n 1.65 1.51 1.43 1.40 1.38 

R2 0.8513 0.8586 0.8530 0.8567 0.8569 
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